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SUBSEQUENCE GENERATORS FOR ERGODIC 
GROUP TRANSLATIONS* 

BY 

MARTIN H. ELLIS AND N A T H A N I E L  A. F RI EDMAN 

ABSTRACT 

Let T be an ergodic translation on a compact abelian group. For every infinite 
set of integers {n,} and e > 0  there is a set A of measure less than e such that 
{T",A} generates the o--algebra of measurable sets. 

The primary aim of this paper is to prove that for any ergodic translation T on 

a compact abelian group, infinite set of integers {n,} and e > 0 there is a set A of 

measure less than e such that {T" ,A}  generates the ~r-algebra of measurable 

sets. 

The following fact, which is proved in [1], will be used. 

THEOREM 1. Let  T be a 1 - 1 aperiodic bimeasurable measure-preserving trans- 

formation on a probability space. For every infinite set o f  integers W and e > 0 

there is a set A of  measure less than e such that U , ~  w T " A  is the entire space. 

Throughout  this paper T will denote  an ergodic translation on a compact 

abelian group G (that is, T ( x )  = xg for some fixed g ~ G )  and {n,} will denote  a 

sequence of integers (indexed by the positive integers) in which no integer is 

repeated. We assume that G is a Lebesque space. Multiplicative notation will be 

used for G. Given two measurable subsets of G, E and F, let E F  = {xy : x E E 

and y E F } ,  E c denote  the complement of E, E - F  denote E N F  c, E A F  

denote ( E -  F ) U  ( F - E ) ,  p~(E) denote the measure of E and OE denote the 

boundary of E. Let 

= {D c_ O :  O D )  = 0}. 

The proof of the following lemma is straightforward and omitted. 
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LEMMA 2. The collection 5P is closed under finite union and intersection, 

complementation, and translation by any group element. 

LEMMA 3. There is a countable collection of sets in 5P which separates points. 

PROOF. A compact abelian group with an ergodic translation has for its dual 

group a subgroup of the circle group with the discrete topology [6, p. 40]. Let II 

denote the circle group and let F denote the dual group of G. Since G is a 

Lebesque space it is separable, so F is countable (if F were uncountable its dual 

would not be separable; yet, by the Pontryagin Duality Theorem [6, p. 27], G is 

F's dual). 

If x ~ y, the Pontryagin Duality Theorem implies there is a y E F for which 

y ( x ) ~  ",/(y). If y ( G ) ~  I], then 7 (G)  is a closed subgroup, hence finite. If a, 

b ~ 7(G) ,  7 ( x ) E  [a, b] and y (y )  ~ [a, b], then c~(y-'[a, b]) = C~ and y-~[a, b] 
separates x and y. 

If y ( G ) =  l-I, then /~(7- ' (a ) )=  0 for all a ~ [I. (Suppose # ( 7 - ' ( a ) ) > 0  for 

some a E H. Since y ( G ) =  H, for each b E [ I  there isa g E G with y(g) = a-~b; 

hence Ix(y-'(b)) = t~(y-'(a)g) =/.t (y-I(a)). However, since {7-'(b): b E H} are 

pairwise disjoint, they cannot all have positive measure, so all must have 

measure zero.) If y (x )~[a ,b ]  and y(y)~_[a,b], then, since O(y-'[a,b])= 

y- '(a)  O y-~(b), y-~[a, b] is in 5r and separates x and y. 

Let K be a countable dense subset of II. Then by the preceding, 

{7-~[a,b]: a, b ~ K, 7 ~ F, and a,b ~ y(G)  if y ( G ) ~  H} 

is a countable collection of sets in 5P which separates points. Q.E.D. 

For a Lebesque space, any countable collection of sets which separates points 

generates the a-algebra of measurable sets [5, p. 22]; hence Lemmas 2 and 3 

imply the following. 

COROLLARY 4. For every measurable set B and e > 0 there is a D E ~ with 
p,(B h D ) <  e. 

LEMMA 5. For every D E 3 ~ and e > 0 there is a neighborhood ~ of the identity 
such that fz (GD N ~D c) < e. 

PROOF. Let G,, n E N be a nested sequence of open sets which form a basis at 

the identity. Then 

/.t (c~D) = # ( ,~NA (e, Dn~?.DC))=liml.~(t~,DntT,  D ' ) . , _ |  O.E.D. 

Suppose T is a translation by g. A sequence {n,} will be called convergent for 
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T if g " converges to some go E G as i goes to infinity. Since the groups being 

considered are compact ,  the following lemma is true. 

LEMMA 6. Every {n~} has convergent subsequences for T. 

The following lemma is our reason for considering sets whose boundary has 

measure zero. 

LEMMA 7. If {n~} is convergent for T, then for every D E 50, 

l imtx T" 'D-  n T",D = 0. 
k ~  i ~ k  i = k  

PROOF. Let e > 0 .  By Lemma 5 there is a neighborhood • of the origin 

satisfying/~ (~D n GD c) < e. Suppose g "' --> go. Choose k E N so that for i _-> k, 

g"' E r Then U,_k T"'D C CDgo and n~=k T"'D D_ G - 6DCgo, whence 

U T ' D  - 0 T ' D  C GDgo- (G - OD~go) = (OD f3 ~TD~)go 
i = k  i = k  

s o  

, (  U T" ,D-  n T"'D)<-lz(t~DAt~DC)<e. Q.E.D.  
i = k  i = k  

If D ~ 5 ~ the conclusion of Lemma  7 may not hold. In this case all that may be 

asserted is that l i m w _ ~ p . ( T " , D -  T " D )  = 0. 

LEMMA 8. Forevery{n~}ande>Othere isanatura lnumberrandaDE50 
with / x ( D ) <  e and/z (U[=l T" 'D)  = 1. 

PROOF. T h e o r e m I i m p l i e s t h e r e i s a s e t B a n d a n r E N w i t h / ~ ( B ) < e / 4 a n d  

/z(U[=l T" 'B) > 1 - e/4. By Corollary 4 choose E E 50 with /z(E A B ) <  e/4r. 
Then /z(U[=l T " ' E ) >  1 -  e/2. Let D = E U T-" ' (G-  U[_, T" 'E) ;  Lemma  2 

implies D E 50. Q.E.D.  

LEMMA 9. If{n,}isconvergentforT, D E 5 0 a n d e  >O, then there i saB~50 
satisfying/z(B)< e and /.L(D A UT.,  T" 'B) < e. 

PROOF. By Lemma 5 there is a neighborhood ff of the identity satisfying 

(1) t~(6D N r < e/4. 

Suppose g "' ~ go. Choose k E N so that for i -_> k, g "' E C~g,. By Lemma  8 choose 

E E50 with t z (E)<e/4k  and /.L(UT_, T" 'E)  = 1. Let B(Dgo')NE. Then 

(2) U T"'(B)C U T"'(Dgo')CffD 
i - k  i = k  
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and 

(3) U T " , ( E - B )  C U T"'(D~go')C- ~TDL 
i = k  i = k  

Since p(U~=~ T 'E) 1 - e / 4 ,  (1), (2), and (3) imply that 

t~ C D -  U T"'B < e/2. 
i = k  

Thus 

~ ( D A  U T"'B)<--~ U T"'B + t ~ ( D A ~ D ) + ~  6 D A  U T"'B 
i = l  i = l  i = k  

< e / 4 +  e /4+  e/2. O.E.D. 

( o ) 
(3) /~ 1. A U Tm'B, < e.+,. 

i = l  

Thus by Lemma 7 choose an integer j., j. > p., which satisfies 

( '~ ) 
(4) ~ I .A U T",B. < e. 

i=pn 

(2) /~ (B,) < e,+,p; l 

and 

THEOREM 10. For every {n,} and e > 0 there is a set A whose measure is less 

than e such that {T"'A } generates the ~r-algebra of measurable sets. 

PROOF. Choose a subsequence {mi} of the {n~} so that {mi} is convergent for 

T. We shall construct a set A with /~ (A)<  e such that {TIn'A} generates. 

By Corollary 4 a sequence {E.} of sets in 5e can be found which generates. Let 

{I,} be a listing of {E.} in which each E. occurs infinitely often. Let e >0 ,  and 

for n E N let e. = 2-"e. 

Sequences {A.}, {B,} and {C.} of sets in ,9~ and sequences of positive integers 

{p.}, {j.} and {k.}, n E N +, will now be defined by induction. Let A~ = 0 .  

Suppose A.  has been defined, A.  E ,9~ By Lemma 7 choose a positive integer 

p. satisfying 

(1) /.t ( U T " A . -  n T ' , A . )  < e. 
\ 

i = P n  i = P n  
/ 

and also satisfying p. > k._~ if n > 1. 

By Lemma 9 choose B. E 5o satisfying 
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and 

(5) ~ ( 6  T" 'B . -  n T",B.) < e.. 
1 = I n  1 = I n  

By Lemma 9 choose C. E 5 e and an integer k., k. > j., so that 

(6) # (C.) < e.+,ja', 

(7) /z I . i  U T ' ,C .  < e.+, 
i = l  

and 

( " ) (8) /z I ,A  U T~"C. < e. 
1 = I n  

are satisfied. Finally, let A.+I = (A. U B . ) - C . ;  by Lemma 2, A.+IE .9~ Thus, 

the induction is completed. 

Note that for all n E N + 

(9) p. < j .  < k. < p.+,. 

Our set A will be UT=, N : = . A . .  Note that (2) implies 

/z(A)  = < ~ ~ ( B . )  < ~ e .+ ,= e/2. 
n = l  n = l  

k n 
For n E N § let D.  = U j"~=p. T " ' A -  A~j .  Tm,A. 

We will now proceed to show that for n ~ N § 

(]o) ~ (/. a D. )  < 8s.. 

Note that 

(11) 

and by (6) and (9) 

(12) 

i .  J. = i .  

U T",A 9 U T" ,B . -  U U r",C, 
i = p .  i = p .  r = n  i = p n  

U Tm'G < j. e,+,jT' 
r = n  i = p n  r = n  

r = n  

Inequalities (4), (11), and (12) imply 

(13) 
i = p ~  i = p .  



120 M . H .  ELLIS AND N. A. FRIEDMAN Israel J. Math. 

Since C. - U~=.+, B, _C A ", inequalities (2). (8). and (9) imply 

)) ( =)))  (14) IX I. n N T"'A <=IX(I.)-IX I. n U T", C . -  U B, 
i = j n  i = j .  r = n + l  

(k ) <--IX(L)+IX U U T",B, 
i = j .  r = n + l  

-IX l.n U T"'C. 
J = In 

<ix(I.)+k. ~ e,+,p;'-( ix(I.)-e.) 
r = r l + l  

<2e.. 

Inequalities (13) and (14) imply 

k T"'A))< 4e.. (15) IX(I.-D.)<=IX(I.- U T" ,A)+IX(I .A(  r" ) 
i = p. i = j .  

Since A C A. U B. U (U~=.+, B.) and A. - U~=. C. c_ A, inequalities (1), (2), 
(4), (6), (8) and (9)imply 

(16) IX(D.-I.)=<IX U T ' , A . -  n T",A - I .  +ix U T',B. - I .  
! = p n  I ~ I n  i = P n  

j .  = ) 
+IX U U T"'B, 

i=pM r = n + l  

+t x n T" 'A.-  n T",A - I .  
i = j .  ~ =1-  

+s.+fl ~ e.§ 
r = n + I  

l = / n  r = t l  

En  + E n + l  

=<IX U T~"G -I. +IX U U 
~ = j .  i=1. r = n + l  

TIn,C,) + 2e. 

<e.+k.  ~ e,+,jT'+2e.+e.+~ <4e.. 
r = n + l  

Inequalities (15) and (16) imply that (10) holds. 
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Since (10) holds for each n • N* and since each set En in the generating 

sequence appears in {L} infinitely often, each E, is in the o'-algebra generated 

by {Tm'A }, whence {Tm'A } generates the o'-algebra of measurable sets. Q.E.D. 

A measure-preserving transformation (on a Lebesque space) has sequence 

entropy zero for every sequence of integers if and only if it has discrete spectrum 

[4, theorem 4]. An ergodic measure-preserving transformation with discrete 

spectrum is conjugate to a translation on a compact abelian group [2, p. 48]. 

Hence as a corollary to Theorem 10 we have the following. 

COROLLARY 11. If an ergodic measure-perserving transformation T has se- 

quence entropy zero for every sequence, then for every {n,} there is a set A with 

~ ( A  ) < e such that {T",A} generates the tr-algebra of measurable sets. 

Corollary 11 is a start at extending to arbitrary sequences of integers Kreiger's 

result [3] concerning entropy and generators. 
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